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ABSTRACT

This publication provides the algorithmic definitions and performance

characterizations for a high performance adaptive "coding module" currently under

development in custom VLSI at two NASA centers. Operation of at least one of these

(single chip) implementations is expected to exceed 500 Mbits/s under laboratory

conditions. Operation of a companion "decoding module" should operate at up to half

the coder's rate. The functionality provided by these modules should be applicable to

most of NASA's science data.

The module incorporates a powerful adaptive noiseless coder for "Standard

Form" Data Sources (i.e., sources whose symbols can be represented by uncorrelated

non-negative integers where the smaller integers are more likely than the larger ones).

Performance close to data entropies can be expected over a "Dynamic Range" of from

1.5 to 12-14 bits/sample (depending on the implementation).

This is accomplished by adaptively choosing the best of many "Huffman

Equivalent" codes to use on each block of 16 samples. Because of the extreme

simplicity of these codes, no table Iookups are actually required in an implementation,

thus leading to the expected very high data rate capabilities already noted. The

"coding module" can be used directly on data which has been "pre-processed" to

exhibit the characteristics of a Standard Form Source. Alternatively, a built-in

Predictive Pre-processor can be used where applicable. This built-in Pre-processor

includes the familiar one-dimensional predictor followed by a function which maps the

prediction error sequences into the desired standard form. Additionally, an External

Prediction can be substituted if desired (e.g., two-dimensional applications), further

extending the module's generality.
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ALGORITHMS FOR A VERY HIGH SPEED

UNIVERSAL NOISELESS CODING MODULE

INTRODUCTION

References 1-4 provide the development and analysis of some practical

adaptive techniques for efficient noiseless (Iossless) coding of a broad class of data

sources. These have been applied, in various forms, to numerous applications.

Those functions and algorithms most desirable for incorporation in a "coding

module" which could be implemented using current custom VLSI capabilities were

presented at the first NASA Data Compression Workshop at Snowbird, Utah, in

198815]. A workshop committee recommended that NASA should proceed and

implement this "coding module." Since then, both the Jet Propulsion Laboratory (JPL)

and the University of Idaho (in conjunction with the Goddard Space Flight Center)

have implemented multiple custom VLSI versions of this coder in CMOS. Operation of

at least one of these (single chip) coding modules is expected to exceed 500 Mbits/s

under laboratory conditions. This far exceeds performance expectations anticipated in

1988. A companion single chip "decoding module" developed by the University of

Idaho is expected to run at up to half the maximum rate of the coding module.

It is anticipated that the high performance functionality of these modules can

serve most of NASA's science data where a Iossless representation is appropriate.

The intent of this publication is to provide a concise description of the

algorithmic and performance characteristics that are embodied in the coding modules

of these VLSI implementations. A more general development, including extensive

application notes can be found in Ref. 6. Details on these implementations are

provided in Refs. 7-9.



THE CODING MODULE

A functional block diagram of a general purpose Iossless coding "module" is

shown in Fig. 1. A variation in Rice's original notation (of subscripting the Greek letter

_/) name various coding operations. Subsequent sections will quickly converge to

more specific definitions that relate to the VLSI modules being implemented.
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Fig. 1. General Purpose Noiseless Coding Module Block Diagram

The input to this coding module

_n = Xl x2... xj (1)

is a J sample block of n bit samples. _( is a priori or Side Information that might help in

the coding process.
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The overall unspecific process of representing _n is named PSI?+ so that the

actual coded result is

N

PSI? + [xn,y]

As Fig. 1 shows, the coding process is split into two independent steps as

discussed below.

STEP 1

A Reversible Pre-processor is a process designed to convert the source

represented by _n sequences (and _') into a close approximation to a STANDARD

FORM Data Source, represented by _n sequences. This process usually includes a

de-correlation procedure (prediction).

The pre-processor converts each _n (and corresponding _', if any) into

_n'= 81 82... 5j (2)

a J >_ 1 sample sequence of n° bit samples. Usually n = n', and we will henceforth

assume that here.

Standard Form Source. Specifically,

a) Samples of _n are the non-negative integers 0, 1, 2, ..., q (3)

b) Samples of _n are independent (4)

c) With Pi = Pr[Sj = i], the probabilities are ordered so that the smaller

integers occur more frequently, i.e.,

P0 > Pl > P2 >. • • (5)
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d) The source entropy is given as

H5 =-,__.,Pi log2 Pi bits/sample
i

m

The best pre-processor will meet these conditions and produce the lowest H6.

(6)

STEP 2

An adaptive entropy coder, named PSI? for now, efficiently represents

(Standard Source) pre-processed _n sequences with the coded result

PSI? [gn] = PSI? + [,X, ¢,']

This entropy coder is independent of the pre-processor. Its goal is to achieve

performance that remains close to H8 as it varies with time.

Note that the coding module in Fig. 1 allows for coder PSI? to be used directly

on externally supplied pre-processed data.

Prelude to the Details

A general form of an Adaptive Entropy coder (designed to efficiently represent

Standard Data Sources), which chooses from multiple algorithm options on a block-

by-block basis, will be identified in the next section. Specific sets of such code options

will be defined and incorporated in this structure as a parametrically defined

adaptive coder. In doing so, the unspecific "PSI?" will be turned into a specific coder

called "PSIss."

Finally, the specific parameters of PSIss that are used in current VLSI

implementations will be identified.

ADAPTIVE ENTROPY CODER FOR THE STANDARD SOURCE

PSI? of Fig. 1 represents the general purpose adaptive coder called PSI11 in

Refs. 2-4. Basically, such a coder chooses one of a set of Code Options (coding algo-
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rithms) to use to represent an incoming block of "pre-processed" data samples. A

unique binary identifier precedes a coded block to tell a decoder which decoding al-
gorithm to use. The following discussion will identify specific code options.

Code Options

Backup. When no coding of any form is performed on the data, we call this

PSIbu

PSIbu [_n] = _n (7)

This representation is used in an adaptive coder when all other available code options

fail to compress _n.

The Fundamental Sequence Code. Recall that the pre-processed

samples of _n are the non-negative integers i >__O. A variable length "Fundamental

Sequence Code, fs", is defined for each i as follows

i zeroes

fs[i] = 00 0 ..... 0 0 0 1 for i_>0 (8)

That is, simply append a 1 to the end of a sequence of i zeroes.

The "Fundamental Sequence" itself is the application of fs[.] to all the samples of

_n. Following Rice's notation,1

PSI I[_ n] = fs[51] * fs[52] * .... fs[Sj] (9)

is the Fundamental Sequence. This defines Code Option, PSI1.

1An asterisk, *, is used to emphasize the concatenation of sequences.
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Split-Sample Modes. The code option definitions here are basically to "split"

off the k least significant bits of each _n sample and send them separately. The

remaining n-k most significant bit samples are then coded using PSI1. Specifically,

with

6n = 61 62. • • 6j

Let

IV1n,k = ml m2 .... mj (10)

be the sequence of all the n-k most significant bit samples of 5n and let

i"k = _Sbl * ,esb2 * .... _sbj (11 )

denote the corresponding sequence of all the k-bit least significant bit samples of (_n.

That is

= mi * ,_sbi (12)

The "Split-Sample" Mode Code Option PSII,k is defined by

PSII,k[6 n] = PSIl[_ln'k] * _-k (13)

Note that k = 0 is a special case where

PSI1,0 = PSI1

and when k = n

PSIln, = PSIbu
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The Individual Code Words. Note that the individual code word

assigned to _i in (12) when code option PSII,k is applied is given as

fs[mi] * _sbi (14)

That is, the Fundamental Sequence Code, fs[.] in (9), is applied to the most significant

n-k bits of 5i, followed by the least significant k bits of 5i. From this description, it should

be easier to see that the only variable length code operation ever required is

the application of fs[.], since the ",_sbs" can simply be shifted out, and fs[.] can be

implemented without any table Iookups.

Performance of the Individual PSll,k Options. Under certain familiar

assumptions on the type of data source (these assumptions will be described in a later

section),

the individual "variable length codes" represented by (14)

can be shown to be equivalent to Huffman Codes,[ 10] (15)

Thus they are not only extremely simple, they are optimum too.

But even more important for their application in an adaptive coder, the entropy

where PSI1 ,k achieves its best performance is at

_k
H 5 = k + 2 bits/sample (16)

_k
and performance remains close to H 5 over a range of +0.5 bit/sample. Thus there is at

least one PSI1 ,k option that should provide efficient coding for any

H5 > 1.5 bits/sample (17)

Such conclusions can also be drawn directly from simulations using a broad

range of data sources.
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Split-Sample Adaptive Coder, PSlss

We can now use these Split-Sample Modes described above to replace the

general coder, PSI? in Fig. 1 with a specific class of parametrically defined adaptive

coders, named PSIss. PSIss is based on the following parameters:

J = block size > 1

n = Input Bits/Sample (18)

N = No. of Code Options

;L2 1 (Dynamic Range Parameter)

A functional block diagram is shown in Fig. 2.

The representation of J sample _n, using an N option PSIss with parameter X >_

1 is given by

PSIss[_ n] = IO(id) * PSI1, k(id)[_ n] (19)

where

id=0, 1,2,... N-1 (20)

is the integer value of a coder identifier for the options used, and ID(id) is its standard

binary representation, requiring 2

[log2 N] bits (21)

2[z] is the smallest integer, greater than or equal to z.
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Fig. 2. Parametric Split-Sample Adaptive Coder Functional Block Diagram

PSI1 ,k(id) is the Split-Sample option specified by id, where

for parameter X >__1.

nforid=N-I
k(id) = (22)

_.- 1 + id Otherwise

Dynamic Range. Except for limiting cases, the range of entropies where

PSIss can be expected to efficiently represent pre-processed _n sequences has been

shown to be closely specified by

m

X + 0.5 < H 8 _<min t n (23)
_.+ N-0.5
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A close look at this expression shows that each increase in ;L moves the

Dynamic Range of efficient performance upwards by 1 bit/sample.

Performance Graph. A graph of typical performance for PSIss with N = 12, ;L

- 1, n = 14 and J = 16 is shown in Fig. 3.
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Fig. 3. PSlss Average Performance for N = 12, n = 14, X = 1, J = 16.

Choosing the Right Option. The optimum criteria for selecting the best

option to use to represent _n is to simply choose the one that produces the shortest

coded sequence. That is,
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choose k = k* if 3

_(PSII,k* [_n]) = rn_n{_(PSI1 ,k [_n])} (24)

Now, letting

Fk =,_(PSI1 [_n,k])

we have from (12)

,_(PSII,k [_n]) = Fk + Jk (25)

and from (8) - (10)

J
Fk = ___.,mi+J

i=1
(26)

(i.e., the sum of the most significant n-k bit samples plus the block size).

Thus (25) and (26) can simplify the decision making in (24) without actually
coding the data. But this can be further simplified.

By taking advantage of the randomness in the
expected value of Fk can be related to F0 by[4],[6]

E{ FklF0} =2-kF0+

least significant bits, the

(27)

which we use as a estimate in (25). We have

3=_'(__)= length of sequence Z_in bits.
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'Yl,k (_'n)= 2-k F0 +

 (PSll,k (28)

We can then choose k = k* if

"/1,k* (_n)= rn_n { Yl,k (_'n) } (29)

and this leads to distinct decision regions based solely on F0 (which by (26) can be

determined by adding up the original samples since mi = 5i). The boundaries to

adjacent PSII,k decision regions are given by

J (2k+1F0 = _ + J ) bits (30)

Any PSI1 ,k option will generate more bits than PSIbu when

J
F0>_[ (n-k)2 k+l + 1-2 k] bits (31)

A sample table of decision regions is shown in Table 1 for an N = 8 option

PSlss.

Note that if the largest value of k used is k = _, then PSI1, ,e will generate more

bits than PSIbu when

FL > (n -,e) J bits (32)

which may be a simpler test than (31) provides in some cases.
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Table 1. Decision Regions for an N = 8 Option PSIss

Code
Option F0 Region in bi_e

PSI1,0 Fo< 5J/2

PSI1,1 5J/2 < Fo < 9J/2

PSII,2 9J/2 < Fo _ 17J/2

PSI1,3 17J/2< Fo < 33J/2

PSI1,4 33J/2< Fo_<G5J/2

P$I1,5 65J/2< Fo_<129J/2

PSIt,6 129J/2< Fo__.(128n-831)J/2

PSIbu (128n-831)J/2 < Fo

PSlss Implementation Parameters

The PSIss parameters used in the current VLSI implementations are as

follows[8,9]:

a) J = Block size of _n = 15 or 16

b) n = Maximum Quantization of _n samples

= 12 for JPL chips

= 14 for University of Idaho chips

13



c) N = number of code options

= 11 for JPL chip

= 12 for University of Idaho chip

d) ;L= Dynamic Range Parameter = 1 = Starting Option Parameter

THE PRE-PROCESSOR

The entropy coder, PSIss, as described in the previous section, was designed

to efficiently represent (pre-processed) Standard Data Sources. PSIss doesn't need to

know which pre-processor was used to produce its input. However, for an extremely

broad set of real problems, the general pre-processing function of Fig. 1 can be

replaced by the more specific Basic Predictive Pre-processor in Fig. 4. It is shown

imbedded within the complete coding module for your convenience.

Standard Predictor

The first part of this pre-processor is a very simple predictor consisting of a

single sample delay element. With xi as the ith sample in _n, this delay element

"predicts" that xi equals the previous sample:

A

Xi = xi-1 (33)

The previous sample could be the last sample from a previous block when coding

multiple blocks. It is assumed that the sample delay is always initialized with a

prediction. But note also at this time that the module's design allows for an External

Prediction to be supplied in place of this simple one-dimensional form.
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CODTHG HODULE, PSZss+

I
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I
I
I

[x+erna[
Predic+ion

Fig. 4. Basic Predictive Pre-processor within Coding Module, PSIss+

The difference between any sample and its prediction produces the error signal

A

Ai = xi - xi (34)

and the block of J error values

_=A1 A2 .... AJ (35)
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As a new data source, A sequences tend to be uncorrelated and display a unimodal

distribution around zero (when data values are not near the boundaries of its dynamic

range). That is4

Pr[Ai=O]> Pr[Ai=-ll>_Pr[Ai= +l]>_Pr[,_i=-2]>_ .... (36)

The Mapper (into Standard Form Source)

When the latter condition in (36) is true, the following function will map each Ai

into a corresponding Standard Source 8i such that

P0 >- Pl > P2-> P3 >- ....

Additionally, it will assure that an n-bit/sample xi from _n produces an n-bit/sample 5i.

Further, the desired probability ordering of the 8i is more closely approximated when xi

values are near 0 or Xmax = 2n - 1.

The Mapper is defined by:

l 2Ai 0 < A i < 0
8i= 2 IAil- 1 -0 < Ai < 0 (37)

0 + IAil Otherwise

4An equally valid assumption is

Pr [Ai = 0] >_Pr [Ai = +1] >_Pr [Ai = -1] > Pr [Ai = +2] >_....

but we will stick with (36). It appears to offer a slight advantage in the implementation

of the mapping function described following (36).
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where

A A

e = min (xi, Xmax -xi)

Xmax = 2 n - 1

(38)

A Further Benefit. Suppose the pre-processor in Fig. 4 is set to receive an

external prediction, and fix that prediction to

^

Xi =0 (39)

Then, tracing through Eqs. (37) and (38), one finds that

5i = xi (40)

That is, the input to the pre-processor, ,_, is passed directly through unchanged as _.

This means that the separate desired external input line in Fig. 1 (to allow the pre-

processor to be skipped) can be omitted.

The Ideal Case

If one assumes that the distribution of & samples in (36) fits the Laplacian form,

then the code equivalence result in (14) can be proven.[ 10] That is,

the simple PSII,k codes are equivalent

to Huffman Codes for Laplacian

distributions of prediction errors. (41)

Reference Sample

Most of those applications which make use of the built-in Predictive Pre-

processor will occasionally need to incorporate a "Reference Sample" along with the

coded prediction errors (e.g., at the start of an image line). Each of the VLSI

17



implementations[ 7-9] incorporates an optional feature to extract such a Reference

Sample from an incoming data stream.

STANDARDIZATION OF THE PSlss+ MODULE

References 8 and 9 describe separate VLSI implementations of the coding

module PSIss+. Both efforts represent significant achievements. However, as a result

of earlier less specific definitions, these implementations have subtle variations in their

algorithmic specification. To ensure compatibility in future applications, recent NASA

efforts have focused on standardizing the definition of a PSIss+ Coding Module.

This publication represents the most up-to-date statement of that effort.
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